Monday, November 24, 2014

Link Dump - Brain, Neuroscience, and Mental Health

Here are a few links that have been hanging around in my browser for the last few days (or weeks). Hope you find them interesting - follow the title links to read the whole article.

How to Study the Brain

Stuart Bradford 
for The Chronicle Review

And that is a good thing. On virtually any account, neuroscience needs more data—a lot more data—than it has.

To begin with, we desperately need a parts list for the brain. The varied multitude of cells in the human brain have names like "pyramidal cells," "basket cells," and "chandelier cells," based on their physical structures. But we don’t know exactly how many cell types there are—some, like Cajal-Retzius cells (which play a role in brain development) are quite rare. And we know neither what all these different cell types do nor why there are so many. Until we have a fuller understanding of the parts list, we can hardly expect to understand how the brain as a whole functions.

A double exposure of weakly electric fish with recordings of brain activity. Credit Béatrice de Géa for The New York Times

Research on the brain is surging. The United States and the European Union have launched new programs to better understand the brain. Scientists are mapping parts of mouse, fly and human brains at different levels of magnification. Technology for recording brain activity has been improving at a revolutionary pace.

The National Institutes of Health, which already spends $4.5 billion a year on brain research, consulted the top neuroscientists in the country to frame its role in an initiative announced by President Obama last year to concentrate on developing a fundamental understanding of the brain.
Scientists have puzzled out profoundly important insights about how the brain works, like the way the mammalian brain navigates and remembers places, work that won the 2014 Nobel Prize in Physiology or Medicine for a British-American and two Norwegians.

Yet the growing body of data — maps, atlases and so-called connectomes that show linkages between cells and regions of the brain — represents a paradox of progress, with the advances also highlighting great gaps in understanding.
Post a Comment