Friday, May 10, 2013

Emotional Self-Control Involves Different Brain Systems than Externally Directed Emotional Response


This recent study sought to identify the brain structures involved in emotion suppression (endogenous condition, i.e., freely chosen by the subject) vs. emotion inhibition (exogenous, or directed by a prompt on the screen) when shown emotionally unpleasant or frightening images.

The results demonstrate that "that emotional self-control involves a quite different brain system from simply being told how to respond emotionally," according to Dr. Simone Kuhn (Ghent University), the lead author.
Endogenous inhibition of emotions was associated with dorso-medial prefrontal cortex activation, whereas exogenous inhibition was found associated with lateral prefrontal cortex activation. 
Here is the study abstract and citation (the full article is behind Springer's paywall), followed by a summary of the article from Science Codex.

Differences between endogenous and exogenous emotion inhibition in the human brain


Simone Kühn, Patrick Haggard, Marcel Brass

Abstract

The regulation of emotions is an integral part of our mental health. It has only recently been investigated using brain imaging techniques. In most studies, participants are instructed by a cue to inhibit a specific emotional reaction. The aim of the present study was to investigate the alternative situation where a person decides to inhibit an emotion as an act of endogenous self-control. Healthy participants viewed highly arousing pictures with negative valence. In the endogenous condition, participants could freely choose on each trial to inhibit or feel the emotions elicited by the picture. In an exogenous condition, a visual cue instructed them to either feel or inhibit the emotion elicited by the picture. Participants’ subjective ratings of intensity of experienced emotion showed an interaction effect between source of control (endogenous/exogenous) and feel/inhibit based on a stronger modulation between feel and inhibition for the endogenous compared to the exogenous condition. Endogenous inhibition of emotions was associated with dorso-medial prefrontal cortex activation, whereas exogenous inhibition was found associated with lateral prefrontal cortex activation. Thus, the brain regions for both endogenous and exogenous inhibition of emotion are highly similar to those for inhibition of motor actions in Brass and Haggard (J Neurosci 27:9141–9145, 2007), Kühn et al. (Hum Brain Mapp 30:2834–2843, 2009). Functional connectivity analyses showed that dorsofrontomedial cortex exerts greater control onto pre-supplementary motor area during endogenous inhibition compared to endogenous feel. This functional dissociation between an endogenous, fronto-medial and an exogenous, fronto-lateral inhibition centre has important implications for our understanding of emotion regulation in health and psychopathology.

Full Citation:
Simone Kühn, Patrick Haggard, Marcel Brass. Differences between endogenous and exogenous emotion inhibition in the human brain. Brain Structure and Function, 2013; DOI: 10.1007/s00429-013-0556-0


Study finds brain system for emotional self-control

Posted May 9, 2013

Different brain areas are activated when we choose to suppress an emotion, compared to when we are instructed to inhibit an emotion, according a new study from the UCL Institute of Cognitive Neuroscience and Ghent University.

In this study, published in Brain Structure and Function, the researchers scanned the brains of healthy participants and found that key brain systems were activated when choosing for oneself to suppress an emotion. They had previously linked this brain area to deciding to inhibit movement.

"This result shows that emotional self-control involves a quite different brain system from simply being told how to respond emotionally," said lead author Dr Simone Kuhn (Ghent University).

In most previous studies, participants were instructed to feel or inhibit an emotional response. However, in everyday life we are rarely told to suppress our emotions, and usually have to decide ourselves whether to feel or control our emotions.

In this new study the researchers showed fifteen healthy women unpleasant or frightening pictures. The participants were given a choice to feel the emotion elicited by the image, or alternatively to inhibit the emotion, by distancing themselves through an act of self-control.

The researchers used functional magnetic resonance imaging (fMRI) to scan the brains of the participants. They compared this brain activity to another experiment where the participants were instructed to feel or inhibit their emotions, rather than choose for themselves.

Different parts of the brain were activated in the two situations. When participants decided for themselves to inhibit negative emotions, the scientists found activation in the dorso-medial prefrontal area of the brain. They had previously linked this brain area to deciding to inhibit movement.

In contrast, when participants were instructed by the experimenter to inhibit the emotion, a second, more lateral area was activated.

"We think controlling one's emotions and controlling one's behaviour involve overlapping mechanisms," said Dr Kuhn.

"We should distinguish between voluntary and instructed control of emotions, in the same way as we can distinguish between making up our own mind about what do, versus following instructions."

Regulating emotions is part of our daily life, and is important for our mental health. For example, many people have to conquer fear of speaking in public, while some professionals such as health-care workers and firemen have to maintain an emotional distance from unpleasant or distressing scenes that occur in their jobs.

Professor Patrick Haggard (UCL Institute of Cognitive Neuroscience) co-author of the paper said the brain mechanism identified in this study could be a potential target for therapies.

"The ability to manage one's own emotions is affected in many mental health conditions, so identifying this mechanism opens interesting possibilities for future research.

"Most studies of emotion processing in the brain simply assume that people passively receive emotional stimuli, and automatically feel the corresponding emotion. In contrast, the area we have identified may contribute to some individuals' ability to rise above particular emotional situations.

"This kind of self-control mechanism may have positive aspects, for example making people less vulnerable to excessive emotion. But altered function of this brain area could also potentially lead to difficulties in responding appropriately to emotional situations."


Source: University College London

No comments: