Sunday, November 09, 2008

Kevin Kelly - Evidence of a Global SuperOrganism

Interesting . . . in a Howard Bloom kind of way.

Evidence of a Global SuperOrganism

I am not the first, nor the only one, to believe a superorganism is emerging from the cloak of wires, radio waves, and electronic nodes wrapping the surface of our planet. No one can dispute the scale or reality of this vast connectivity. What's uncertain is, what is it? Is this global web of computers, servers and trunk lines a mere mechanical circuit, a very large tool, or does it reach a threshold where something, well, different happens?

So far the proposition that a global superorganism is forming along the internet power lines has been treated as a lyrical metaphor at best, and as a mystical illusion at worst. I've decided to treat the idea of a global superorganism seriously, and to see if I could muster a falsifiable claim and evidence for its emergence.

My hypothesis is this: The rapidly increasing sum of all computational devices in the world connected online, including wirelessly, forms a superorganism of computation with its own emergent behaviors.

Superorganisms are a different type of organism. Large things are made from smaller things. Big machines are made from small parts, and visible living organisms from invisible cells. But these parts don't usually stand on their own. In a slightly fractal recursion, the parts of a superorganism lead fairly autonomous existences on their own. A superorganism such as an insect or mole rat colony contains many sub-individuals. These individual organisms eat, move about, get things done on their own. From most perspectives they appear complete. But in the case of the social insects and the naked mole rat these autonomous sub individuals need the super colony to reproduce themselves. In this way reproduction is a phenomenon that occurs at the level of the superorganism.

I define the One Machine as the emerging superorganism of computers. It is a megasupercomputer composed of billions of sub computers. The sub computers can compute individually on their own, and from most perspectives these units are distinct complete pieces of gear. But there is an emerging smartness in their collective that is smarter than any individual computer. We could say learning (or smartness) occurs at the level of the superorganism.

Supercomputers built from subcomputers were invented 50 years ago. Back then clusters of tightly integrated specialized computer chips in close proximity were designed to work on one kind of task, such as simulations. This was known as cluster computing. In recent years, we've created supercomputers composed of loosely integrated individual computers not centralized in one building, but geographically distributed over continents and designed to be versatile and general purpose. This later supercomputer is called grid computing because the computation is served up as a utility to be delivered anywhere on the grid, like electricity. It is also called cloud computing because the tally of the exact component machines is dynamic and amorphous - like a cloud. The actual contours of the grid or cloud can change by the minute as machines come on or off line.

There are many cloud computers at this time. Amazon is credited with building one of the first commercial cloud computers. Google probably has the largest cloud computer in operation. According to Jeff Dean one of their infrastructure engineers, Google is hoping to scale up their cloud computer to encompass 10 million processors in 1,000 locations.

Each of these processors is an off-the-shelf PC chip that is nearly identical to the ones that power your laptop. A few years ago computer scientists realized that it did not pay to make specialized chips for a supercomputer. It was far more cost effective to just gang up rows and rows of cheap generic personal computer chips, and route around them when they fail. The data centers for cloud computers are now filled with racks and racks of the most mass-produced chips on the planet. An unexpected bonus of this strategy is that their high production volume means bugs are minimized and so the generic chips are more reliable than any custom chip they could have designed.

If the cloud is a vast array of personal computer processors, then why not add your own laptop or desktop computer to it? It in a certain way it already is. Whenever you are online, whenever you click on a link, or create a link, your processor is participating in the yet larger cloud, the cloud of all computer chips online. I call this cloud the One Machine because in many ways it acts as one supermegacomputer.

Gcc

The majority of the content of the web is created within this one virtual computer. Links are programmed, clicks are chosen, files are moved and code is installed from the dispersed, extended cloud created by consumers and enterprise - the tons of smart phones, Macbooks, Blackberries, and workstations we work in front of. While the business of moving bits and storing their history all happens deep in the tombs of server farms, the cloud's interaction with the real world takes place in the extremely distributed field of laptop, hand-held and desktop devices. Unlike servers these outer devices have output screens, and eyes, skin, ears in the form of cameras, touch pads, and microphones. We might say the cloud is embodied primarily by these computer chips in parts only loosely joined to grid.

This megasupercomputer is the Cloud of all clouds, the largest possible inclusion of communicating chips. It is a vast machine of extraordinary dimensions. It is comprised of quadrillion chips, and consumes 5% of the planet's electricity. It is not owned by any one corporation or nation (yet), nor is it really governed by humans at all. Several corporations run the larger sub clouds, and one of them, Google, dominates the user interface to the One Machine at the moment.

None of this is controversial. Seen from an abstract level there surely must be a very large collective virtual machine. But that is not what most people think of when they hear the term a "global superorganism." That phrase suggests the sustained integrity of a living organism, or a defensible and defended boundary, or maybe a sense of self, or even conscious intelligence.

Sadly, there is no ironclad definition for some of the terms we most care about, such as life, mind, intelligence and consciousness. Each of these terms has a long list of traits often but not always associated with them. Whenever these traits are cast into a qualifying definition, we can easily find troublesome exceptions. For instance, if reproduction is needed for the definition of life, what about mules, which are sterile? Mules are obviously alive. Intelligence is a notoriously slippery threshold, and consciousness more so. The logical answer is that all these phenomenon are continuums. Some things are smarter, more alive, or less conscious than others. The thresholds for life, intelligence, and consciousness are gradients, rather than off-on binary.

With that perspective a useful way to tackle the question of whether a planetary superorganism is emerging is to offer a gradient of four assertions.

There exists on this planet:

  • I A manufactured superorganism
  • II An autonomous superorganism
  • III An autonomous smart superorganism
  • IV An autonomous conscious superorganism

These four could be thought of as an escalating set of definitions. At the bottom we start with the almost trivial observation that we have constructed a globally distributed cluster of machines that can exhibit large-scale behavior. Call this the weak form of the claim. Next come the two intermediate levels, which are uncertain and vexing (and therefore probably the most productive to explore). Then we end up at the top with the extreme assertion of "Oh my God, it's thinking!" That's the strong form of the superorganism. Very few people would deny the weak claim and very few affirm the strong.

My claim is that in addition to these four strengths of definitions, the four levels are developmental stages through which the One Machine progresses. It starts out forming a plain superorganism, than becomes autonomous, then smart, then conscious. The phases are soft, feathered, and blurred. My hunch is that the One Machine has advanced through levels I and II in the past decades and is presently entering level III. If that is true we should find initial evidence of an autonomous smart (but not conscious) computational superorganism operating today.

But let's start at the beginning.

Go read the whole article.


No comments: