Showing posts with label posttraumatic stress disorder. Show all posts
Showing posts with label posttraumatic stress disorder. Show all posts

Tuesday, February 24, 2015

The Evolutionary Role of the Freeze Response in Trauma

http://ecx.images-amazon.com/images/I/51egCAixgxL._SY344_BO1,204,203,200_.jpg


One of the biggest challenges in working with survivors of sexual trauma is the client's sense of failure if, during the course of the assault or rape, s/he froze and did not fight or run. The client feels s/he failed to do what s/he "should" have done, or could have done, to fight off or run from the perpetrator.

Of course, we know this is not true. And we might try to help the client understand that any response that kept him/her alive is the right response. Often these attempts to reframe the situation fall on deaf ears.

However, I have found that offering a biological and evolutionary explanation seems to carry a little more weight. Below is one of the best explanations of the neurobiology of the freeze response, courtesy of Joseph LeDoux.
"[F]reezing is a beneficial response when faced with a predator. Predators, primal danger for most animals, respond to and are excited by movement. Keeping still in the face of danger is often the best thing for the prey to do. Because millions of years ago animals who did so were more likely to survive, today it's what most animals do, at least as an initial line of defense. Freezing is not a choice but an automatic response, a preprogrammed way of dealing with danger."

"What's interesting is that freezing also occurs if a rat (or other animal) clearly hears a sound that preceded an aversive stimulus (a mild electrical shock of its feet) on some prior occasion. There's no predator around in this case, so how is the connection formed? The sound is a warning signal. Any rat that survives an encounter with a cat or other predator should store in its brain as much about the situation as possible so that the next time the sounds, sights, or smells that preceded the arrival of the cat occur, those stimuli can be attended to in order to increase its chances of staying alive."


~ Joseph LeDoux, Synaptic Self: How Our Brains Become Who We Are, 2002, p. 6

Saturday, September 13, 2014

Reduced Amygdala and Ventral Striatal Activity to Happy Faces in PTSD Is Associated with Emotional Numbing

http://lifeofamaybeborderline.files.wordpress.com/2010/10/comfortably-numb-maschera.jpg

From PLoS ONE, this is an interesting article on how emotional numbing in those experiencing PTSD reduces neural activity in exposure to happy faces.
This study provides initial evidence that individuals with PTSD have lower reactivity to happy facial expressions, and that lower activation in ventral striatal-limbic reward networks may be associated with symptoms of emotional numbing.

Full Citation:
Felmingham KL, Falconer EM, Williams L, Kemp AH, Allen A, et al. (2014, Sep 3). Reduced Amygdala and Ventral Striatal Activity to Happy Faces in PTSD Is Associated with Emotional Numbing. PLoS ONE 9(9): e103653. doi:10.1371/journal.pone.0103653

Reduced Amygdala and Ventral Striatal Activity to Happy Faces in PTSD Is Associated with Emotional Numbing


Kim L. Felmingham, Erin M. Falconer, Leanne Williams, Andrew H. Kemp, Adrian Allen, Anthony Peduto, Richard A. Bryant

Abstract

There has been a growing recognition of the importance of reward processing in PTSD, yet little is known of the underlying neural networks. This study tested the predictions that (1) individuals with PTSD would display reduced responses to happy facial expressions in ventral striatal reward networks, and (2) that this reduction would be associated with emotional numbing symptoms. 23 treatment-seeking patients with Posttraumatic Stress Disorder were recruited from the treatment clinic at the Centre for Traumatic Stress Studies, Westmead Hospital, and 20 trauma-exposed controls were recruited from a community sample. We examined functional magnetic resonance imaging responses during the presentation of happy and neutral facial expressions in a passive viewing task. PTSD participants rated happy facial expression as less intense than trauma-exposed controls. Relative to controls, PTSD participants revealed lower activation to happy (-neutral) faces in ventral striatum and a trend for reduced activation in left amygdala. A significant negative correlation was found between emotional numbing symptoms in PTSD and right ventral striatal regions after controlling for depression, anxiety and PTSD severity. This study provides initial evidence that individuals with PTSD have lower reactivity to happy facial expressions, and that lower activation in ventral striatal-limbic reward networks may be associated with symptoms of emotional numbing.


Introduction


PTSD is a complex psychiatric condition with features that extend beyond conditioned fear responses to include a wider range of emotional difficulties, such as emotional numbing [1]. Emotional numbing focuses on diminished positive affect, including an absence of feelings of love and happiness, and a lack of response to positive environmental events [2], [3]. Little is known about the neural networks associated with processing positive stimuli in PTSD. Recently, there has been a growing recognition of the importance of reward processing and in understanding its neural basis in PTSD. Emotional numbing has been shown to be the symptom that is most characteristic of chronic PTSD [4], and is strongly associated with functional and interpersonal impairment [5], [6].

Two behavioral studies have reported deficient reward function in PTSD. Vietnam veterans with PTSD have been found to expend less effort in viewing beautiful female faces [7], and to have lower expectancy and satisfaction with rewards in a gambling task [8]. Two fMRI studies have examined functioning of reward networks in PTSD using monetary reward tasks [9], [10]. Participants with PTSD showed lower activation in nucleus accumbens and medial prefrontal cortex (mPFC) [10] and in dorsal and ventral striatal regions (caudate and putamen) [9] compared to non-trauma exposed controls in response to gains. This pattern was interpreted to reflect deficiencies in reward function. However, it is unclear in these studies whether the lower activation in ventral striatal regions is due to PTSD specifically, or trauma-exposure, as both studies did not include a trauma-exposed control group.

Interestingly, anhedonia in patients with major depression has also been associated with lower responses in left nucleus accumbens and bilateral caudate in response to gains in a monetary incentive task [11]. Anhedonia, defined as a lack of reactivity to pleasurable stimuli, has considerable conceptual overlap to emotional numbing in PTSD. This raises the possibility that the lower ventral striatal activity seen in PTSD may at least partially be explained by the high rates of comorbid depression observed with this disorder.

Previous imaging studies in healthy controls have examined ventral striatal reactivity to gains in monetary incentive tasks [9][11], which may recruit distinctive networks from those involved in the perception of positive signals [12]. Perception of positive signals/hedonic tone appears centered on networks encompassing the nucleus accumbens [12], [13], whereas networks involved in processing stimulus-reward association are associated with wider orbitofrontal-dorsal and ventral striatal networks [13]. Therefore, it is important to examine reward function in ventral striatal networks in PTSD in terms of reactivity to positive stimuli. Only one pilot study has examined neural reactivity to positive affective signals (animated film) in PTSD. Greater activation was found in right precentral and superior frontal gyrus, and lower activation in parahippocampal and superior temporal gyrus were found in the PTSD group [14]. However, this study employed small sample sizes (8 males) and did not specifically examine emotional numbing.

In the healthy brain, happy faces engage a neural network involving the ventral striatum (encompassing putamen and nucleus accumbens) [15], amygdala [16], [17], [18], orbitofrontal cortex [19] and anterior cingulate [16]. To date, the neural correlates of perception of innate positive signals, such as happy facial expressions, have not been examined in PTSD. Examining reactivity to facial expressions in PTSD is of particular importance, as research suggests that deficiencies in response to facial displays of affect contribute significantly to functional and social impairment [20]. Indeed, emotional numbing, which involves blunted positive affect and reactivity, has been found as the major contributor to functional impairment in PTSD [5], [6].

Accordingly, the present study examined the neural networks underlying the processing of happy facial expressions in PTSD. Secondly, we examined the extent to which impairments in reactivity to positive emotional signals were associated with emotional numbing in PTSD. It was predicted there would be a lower activation in networks involved in the processing of happy faces (ventral striatum encompassing nucleus accumbens, and amygdala) in PTSD compared to trauma-exposed controls. Further, we expected lower activation in these regions to be associated with more severe symptoms of emotional numbing in PTSD.


Methods and Materials

Participants

Twenty-three individuals who developed PTSD as a result of physical assault (n = 15) or motor vehicle accidents (n = 8) were recruited for the study from the Traumatic Stress Clinic, Westmead Hospital. There were 13 female and 10 male participants with an average duration since trauma of 60.8 months (SD = 74.3). Twenty trauma-exposed controls (Trauma Controls: those who had experienced a criterion A trauma (defined by DSM-IV as being confronted with an experience that threatened physical integrity) but did not develop PTSD symptoms that reached diagnostic PTSD (or sub-clinical status) were recruited from community settings (in collaboration with the Brain Resource International Database) [21]. Ten Trauma Controls had experienced motor vehicle accidents, and 10 had experienced interpersonal assault. There was an average duration post-trauma of 110 months (SD = 139) for Trauma Controls. Participants were administered the Composite International Diagnostic Interview (CIDI) [22] to diagnose those with PTSD and identify those who were trauma-exposed controls. Trauma Controls reported symptoms that did not meet criteria for the Re-experiencing cluster (cluster B) of symptoms, or more than one PTSD symptom cluster for Avoidance or Hyperarousal. To provide an estimate of the severity and frequency of PTSD symptoms (including emotional numbing), participants with PTSD were also administered the Clinician Administered PTSD Scale (CAPS) [23]. Fifteen participants with PTSD had comorbid major depression (8 were medicated with antidepressants), 1 had comorbid panic disorder, and 1 comorbid OCD. All participants were excluded if there was any current substance abuse or dependence (within six months of testing), history of brain injury or neurological condition, psychosis or significant medical condition. To provide an estimate of current mood, all participants were administered the Depression Anxiety Stress Scales [24]. All participants provided written informed consent according to the Declaration of Helsinki. This study was approved by the Western Sydney Area Health Service Human Research Ethics Board.

Face Emotion Perception Task

The facial emotion perception task was previously established to activate networks in ventral striatum, anterior cingulate cortex and amygdala [25]. Participants viewed 240 grey-scale face stimuli selected from a standardized picture set [26]. The set consisted of four female and four male individuals depicting happy and neutral facial expressions. Face stimuli were presented in a pseudorandom sequence of 30 blocks (comprising 8 happy or 8 neutral faces each). Each stimulus was presented for 500 ms and was followed by a 767.5 ms blank screen interstimulus interval. Emotion identification accuracy and ratings of the intensity of facial emotion were assessed immediately post-scanning. Intensity ratings employed 9-point Likert scales (0 = not at all intense, 9 = very intense).

fMRI Data Acquisition

MRI scans were performed on a 1.5 T Siemens Vision Plus Scanner using an echo echoplanar protocol. A total of 90 functional T*2-weighted volumes (3 stimuli per block) were acquired for each condition, comprising 15 non-contiguous slices parallel to the intercommissural (AC-PC) line, with a 6.6 mm thickness and TR = 3.3 sec, TE = 40 ms, Flip angle = 90°; with FOV 24×24 cm2, matrix size 128×128.

Functional MRI Data Reduction and Analysis

Pre-processing and statistical analysis of fMRI data was conducted using Statistical Parametric Mapping (SPM-2, Wellcome Department of Neurology, London, UK). Functional scans were realigned, unwarped, spatially normalized and smoothed in order to remove movement artefact and to place data into a common anatomical frame. Images were normalized into standardized MNI space and smoothed using a Gaussian kernel (FWHM: 8 mm).

An HRF-convolved boxcar model with temporal derivative was created to correspond to the experimental model, and a high pass filter was applied to remove low frequency fluctuations in the BOLD signal. Individual contrast images (fear versus neutral) were brought to the second level and examined using t-tests.

For the group voxelwise analysis, random effects independent samples t-tests comparing the PTSD and Trauma Control group to happy (-neutral) faces were conducted. To test our a priori hypotheses, analyses were undertaken using a search region of interest (ROI) approach which included regions of the amygdala and ventral striatum (caudate and putamen, including nucleus accumbens). Search regions were defined by the Automated Anatomical Labelling (AAL) Masks [27] and selected using the WFU Pickatlas (Version 1.02). We created an anatomical region of interest mask for the ventral striatum by combining caudate and putamen (including nucleus accumbens). Nucleus accumbens was identified at the inferior junction between the head of caudate and putamen, in accordance with previous studies and the Human Brain Atlas [28], [29]. Coordinates of peak activations within the nucleus accumbens were confirmed with reference to the Human Brain Atlas.

Previous studies of facial emotion processing have used an uncorrected p value of p<.05 for determining significant activations in small structures based on a priori hypotheses [17], or p<.005 when examining ventral striatum in monetary incentive tasks [11]. Given our a priori directional hypotheses, in line with previous literature [9], [17] we employed independent samples t-tests using the above ROIs, with an alpha value of p<.005, and a spatial extent threshold of 10 contiguous voxels. To examine the influence of comorbid depression, a sub-analysis (using the same analysis techniques as above) was conducted comparing PTSD_with depression (n = 15) and Trauma Controls, PTSD_no depression (n = 8) and Trauma Controls, and PTSD_with and PTSD_No depression groups using independent samples t-tests.

For the correlational analysis, intensity beta values were extracted from the most significant voxels for each individual in the ventral striatum ROI. Pearson Product moment correlations were conducted in SPM2 within the PTSD group between each individual's peak BOLD ventral striatal activity in response to happy faces and their emotional numbing score (derived from ratings on the CAPS in a procedure taken from Foa et al., (1995). To control for PTSD severity, depression and state anxiety, correlations were conducted with PTSD severity (total CAPS score), DASS depression score, and DASS anxiety score included as covariates. A probability estimate of p<.01 and the extent threshold >10 voxels per cluster was adopted.


Results

Demographic and Clinical Data

Demographic and clinical data are summarized in Table 1. The PTSD group were significantly older than the Trauma Controls, and there was a trend for Trauma Controls to have longer time since trauma, but there were no significant differences in gender distribution between groups. All analyses reported below were repeated taking age and time-post trauma as covariates; findings remained consistent and will not be reported. As expected, PTSD participants scored higher on the DASS depression and DASS anxiety scores.

Table 1. Summary of demographic and clinical characteristics of the PTSD (n = 23) and Trauma Exposed Control (n = 20) groups. doi:10.1371/journal.pone.0103653.t001
Facial Expression Ratings Data

There were no significant differences between groups in accuracy for identification of happy (Trauma Control: 100%; PTSD: 99% correct) or neutral facial expressions (Trauma Control: 76%; PTSD: 78% correct). In terms of intensity of emotional expression, the PTSD group rated the happy faces as less intense than Trauma Controls (F(1,26) = 4.2, p<.05).

fMRI Data

PTSD participants revealed lower activation in response to perception of happiness (versus neutral) left nucleus accumbens extending into putamen, and trends for lower activation in left amygdala compared to Trauma Controls (see Table 2 and Figure 1). There were no significantly greater activations in these regions of interest in the PTSD group. Examination of percentage of signal change to happy and neutral faces (see Figure 2) reveals that these group differences are most apparent in response to happy faces.
http://www.plosone.org/article/fetchObject.action?uri=info:doi/10.1371/journal.pone.0103653.g001&representation=PNG_L

Figure 1. Reduced BOLD Activity in Ventral Striatum and Amygdala in PTSD (n = 23) compared to trauma-exposed controls (n = 20) in response to happy (- neutral) facial expressions. doi:10.1371/journal.pone.0103653.g001
http://www.plosone.org/article/fetchObject.action?uri=info:doi/10.1371/journal.pone.0103653.g002&representation=PNG_L

Figure 2. Percentage signal change in BOLD response to happy faces (Panel A) in Left Ventral Striatum (LS), Right ventral striatum (RS), Left Amygdala (LA), and Right Amygdala (RA), and percentage signal change in BOLD response to Neutral Faces (Panel B) in Left Ventral Striatum (LS), Right Ventral Striatum (RS), Left Amygdala (LA) and Right Amygdala (RA).  doi:10.1371/journal.pone.0103653.g002
http://www.plosone.org/article/fetchObject.action?uri=info:doi/10.1371/journal.pone.0103653.t002&representation=PNG_L

Table 2. Summary of between-group t-tests: Increased BOLD signal elicited by happy faces compared to neutral faces in the PTSD (n = 23) and Trauma-exposed controls (TC: n = 20; (p<.005 uncorrected). doi:10.1371/journal.pone.0103653.t002
Effect of Medication.
To examine the impact of medication, fMRI data was reanalyzed comparing unmedicated PTSD patients (n = 15) with Trauma Controls, and comparing medicated PTSD patients (n = 8) with Trauma Controls (see Table 3). Findings reinforced our overall group findings. Unmedicated PTSD patients displayed lower activations in left amygdala and displayed trends for lower activation in right nucleus accumbens. There were no greater activations in these regions in the PTSD group. Further, a sub-analysis of fMRI data in medicated PTSD patients (n = 8) compared to Trauma Controls revealed trends for reduced activation in right amygdala and right ventral striatum.
http://www.plosone.org/article/fetchObject.action?uri=info:doi/10.1371/journal.pone.0103653.t003&representation=PNG_L

Table 3. Increased BOLD signal elicited by happy faces compared to neutral faces in the PTSD-No Medication Group (n = 15) vs Trauma-exposed controls (TC: n = 20;), and PTSD-Medication Group (n = 8) vs Trauma-exposed controls (TC: n = 20). doi:10.1371/journal.pone.0103653.t003
Effect of Depression.

To examine the impact of depression, fMRI data was reanalyzed comparing PTSD with depression with Trauma Controls, and PTSD without depression to Trauma Controls. Findings are summarized in Table 4. Relative to Trauma Controls, the PTSD without depression group displayed significantly reduced activity in right amygdala and a trend for reduced activity in left ventral striatum. There were no greater activations in the PTSD group without depression over Trauma Controls. The PTSD group with depression revealed trends for reduced activation in right amygdala and significantly reduced activation in right ventral striatum. Comparing PTSD samples with and without depression revealed that PTSD patients with depression had lower activation in right caudate compared to PTSD without depression patients. PTSD patients without depression displayed no significant differences in neural activation compared to PTSD with depression patients.
Table 4 Increased BOLD signal elicited by happy faces compared to neutral faces in the PTSD-No Depression Group (n = 8) vs Trauma-exposed controls (TC: n = 20;), and PTSD-Depression Group (n = 15) vs Trauma-exposed controls (TC: n = 20).
Table 4. Increased BOLD signal elicited by happy faces compared to neutral faces in the PTSD-No Depression Group (n = 8) vs Trauma-exposed controls (TC: n = 20;), and PTSD-Depression Group (n = 15) vs Trauma-exposed controls (TC: n = 20). doi:10.1371/journal.pone.0103653.t004
Correlation Analyses.

Given the small samples in the depression sub-analysis, a correlation analysis was used to examine the relationships between emotional numbing symptoms and BOLD activation to happy faces in unmedicated PTSD participants, whilst taking depression and anxiety (DASS scales) and PTSD severity as covariates. Figure 3 presents a summary of findings. More severe symptoms of emotional numbing correlated negatively with activation in the right ventral striatum (putamen extending into nucleus accumbens: −32 −14 −4, 138 voxels, T = 5.7, p<.05, r = −.709) see Figure 3) and the culmen (−6 −52 −8, 219 voxels, T = 6.7,p<.01). A partial correlation analysis was also conducted between depression scores and activation in the right ventral striatum (putamen extending into nucleus accumbens (MNI coordinates) −32 −14 −4), whilst controlling for numbing scores. There was no significant correlation found between depression and ventral striatum activation (r = .27, p = .35).
http://www.plosone.org/article/fetchObject.action?uri=info:doi/10.1371/journal.pone.0103653.g003&representation=PNG_M
Figure 3. Correlations between BOLD activity to happy (-neutral) facial expressions in ventral striatum (putamen extending into nucleus accumbens) and CAPS emotional numbing scores in the unmedicated PTSD (n = 15) group. doi:10.1371/journal.pone.0103653.g003


Discussion


Our hypotheses that activation in ventral striatal reward processing networks would be lower in PTSD to happy faces, and that this would be associated with emotional numbing symptoms, were largely confirmed. The PTSD group displayed behavioural evidence of less reactivity to happy faces as they rated happy faces as less intense in expression than trauma controls. Lower activation in ventral striatal regions (putamen and nucleus accumbens) and amygdala was seen in PTSD compared to Trauma Controls in response to happy (-neutral) faces. Importantly, a correlational analysis that controlled for depression, anxiety and PTSD severity found a negative correlation between emotional numbing symptoms in PTSD and activation in ventral striatum in the PTSD group, but there was no correlation between depression symptoms and ventral striatal activation.

These findings accord with recent reports of lower activation in nucleus accumbens and ventral striatal regions in PTSD in response to gains in monetary incentive tasks [9], [10], and extend this previous research by demonstrating that PTSD is associated with impaired perception of innate reward signals (happy facial expressions), with a concurrent reduction in activity within ventral striatal networks. This is significant given evidence that facial perception contributes significantly to social functioning [20], and that emotional numbing in PTSD is the most significant predictor of chronic functional and social impairment [5], [6]. Importantly, this study also extends previous research by including a trauma-exposed control group – our results suggest that lower activation in ventral striatal reward networks is specifically associated with PTSD, rather than trauma exposure per se.

Despite this convergence, there was also evidence of distinctive functional networks mediating motivational incentive tasks and happy face perception. Sailer and colleagues (2009) reported lower activation in medial frontal gyrus and nucleus accumbens in PTSD, reflecting weaker mesocortical dopaminergic activity [10]. Elman and colleagues (2009) found lower activation in both ventral and dorsal striatal regions (encompassing putamen and caudate, but not nucleus accumbens) [9]. In contrast, we found less activation specifically in ventral striatum (left nucleus accumbens extending into putamen) to happy faces. Ventral striatum is thought to process salience and prediction of reward signals, whereas dorsal striatum is more involved in action planning, cognitive function and sensorimotor integration [30], [31]. Nucleus accumbens is a region that is particularly associated with processing positive signals [32].

The fact that lower activation in ventral striatal activity did not remain significant when removing PTSD participants with depression from the analysis, suggests that depression may contribute to the impairments in these networks. This accord with recent evidence of reduced nucleus accumbens activation to monetary rewards in major depression [11]. However, depression is not likely to be a sufficient explanation for these null findings, as although the PTSD group with depression displayed a significant reduction in activation of ventral striatum, this reduction was at trend level in the PTSD without depression group. Further, direct comparison of the PTSD with and without depression groups revealed that the PTSD with depression group displayed lower activation in more dorsal regions ofthe striatum relative to the PTSD group without depression. This lower activation may reflect impaired activation in networks governing action initiation associated with depression [30]. The failure to find lower ventral striatal activation within the PTSD group without depression compared to controls is more likely a result of limited statistical power, as the sample size for non-depressed participants was small (n = 8). This interpretation is supported by the fact that the significant negative correlation between emotional numbing and ventral striatum remained significant after controlling for depression, and there was no significant correlation between ventral striatal activity and depression whilst controlling for numbing. Medication status does not appear to be a sufficient explanation for these findings, as comparisons between the Trauma Control group and medicated PTSD patients and unmedicated PTSD patients resulted in reduction of ventral striatal activation being reduced to trend level in both analyses. Again, however, this may relate to the smaller group sizes in these analyses. To clarify the role of depression and medication status, future research needs to examine depressed and non-depressed, medicated and non-medicated PTSD participants with larger group sizes.

There was a trend for reduced amygdala activation in the PTSD group compared to trauma controls which became significant once removing medicated PTSD participants, suggesting that medication use may have masked some amygdala effects. This reduction in amygdala activity to happy faces contrasts with reports of heightened amygdala activation to fearful faces in PTSD [33], [34], suggesting that these results may not be explained by a generalized impairment in processing emotional expressions. Amygdala activation has been associated with fear perception [35], but also with a broader construct of stimulus salience [36]. There is increasing evidence that the amygdala is also responsive to happy facial expressions [16][18], [37]. To the extent that amygdala activation reflects detection of salient stimuli [36], the fMRI findings suggest there is a blunted response to salient positive signals, in contrast to a heightened detection of threat (fearful face) stimuli in PTSD.

An unexpected but convergent finding was the evidence for lower activation in right orbitofrontal cortex in the non-depressed PTSD group compared to trauma controls in response to happy faces. Medial OFC has afferents to ventral striatum [38] and is thought to modulate reward related behaviours [39][43]. Anterolateral orbitofrontal cortex increases activity in response to signals of absence of reward (Ursu & Carter, 2005), and in anticipation of viewing aversive images [44], [45]. Therefore, this finding suggests that PTSD without comorbid depression is associated with lower activation in reward-processing networks in the orbitofrontal cortex.

To explore predictions of the prevailing model of emotional numbing [2], future research needs to examine responses to positive and threatening stimuli concurrently. The use of a passive viewing task with a predictable series of facial expressions may have reduced our BOLD signal, as fMRI activity has been found to be greatest in response to unpredictable rewarding stimuli in nucleus accumbens and medial orbitofrontal cortex [46]. Indeed, these findings should be viewed as preliminary and require replication, as they did not survive correction for multiple comparisons. Future studies examining responses to positive signals in depressed and non-depressed PTSD samples should employ larger sample sizes and a more active emotional task to enhance BOLD signal. A more comprehensive measure of emotional numbing should be employed in future studies rather than relying on PTSD symptom scores from the CAPS. Future research should examine group differences in BOLD responses to neutral facial expressions, independently of emotional faces. Although findings may be confounded by the direct comparison of happy and neutral faces [47], examining the percentage signal change for our key ventral striatal findings suggests the main effects are driven by response to the happy face rather than the neutral face (Figure 2). Future research should employ a separate fixation baseline condition to avoid a direct comparison of happy and neutral faces. Finally, the cross-sectional design prevented us identifying if altered brain patterns preceded or followed traumatic exposure.

In conclusion, this study provides novel evidence that individuals with PTSD perceive happy facial expressions as less intense and that lower activation in ventral striatal-limbic reward networks is associated with symptoms of emotional numbing in PTSD. Importantly, these blunted responses to positive facial signals are not accounted for by trauma exposure or comorbid depression. The identification of impaired functioning of reward networks in PTSD points to the need for better understanding of these networks in PTSD and the role they play in the trajectory of PTSD. Improving the capacity to respond to positive emotional signals in PTSD is of vital therapeutic importance, given evidence that emotional numbing symptoms contribute predominantly to functional and social impairments in chronic PTSD.

Acknowledgments

We thank the Brain Resource International Database (under the auspices of the Brain Resource Company) for support in data acquisition and methodology. Kim Felmingham, Erin Falconer, Andrew Kemp, Adrian Allen, Anthony Peduto and Richard Bryant report no biomedical financial interests or potential conflicts of interest. Leanne Williams owns personal shares in the Brain Resource Company that are less than 1% of the company value. Kim Felmingham has had full access to all of the data in the study and takes responsibility for the integrity of the data and the accuracy of the data analysis.

Author Contributions

Conceived and designed the experiments: KF EF AK LW AA AP RB. Performed the experiments: AP KF. Analyzed the data: KF RB LW. Wrote the paper: KF RB EF AA LW AK.

References at the PLoS ONE site


Thursday, August 28, 2014

Researchers Investigate Novel Approaches to Reducing Negative Memories

Two new studies hit the news this on Wednesday, both of which involve changing the emotional impact of memories.

The first was a joint project between MIT and Howard Hughes Medical Institute researchers. We'll start with the press release from MIT, a study that uses optogenetics (light stimulation) to alter emotional connections with memories:

Neuroscientists reverse memories' emotional associations: Brain circuit that links feelings to memories manipulated

Date: August 27, 2014
Source: Massachusetts Institute of Technology

Summary:
Most memories have some kind of emotion associated with them: Recalling the week you just spent at the beach probably makes you feel happy, while reflecting on being bullied provokes more negative feelings. A new study from neuroscientists reveals the brain circuit that controls how memories become linked with positive or negative emotions.

This image depicts the injection sites and the expression of the viral constructs in the two areas of the brain studied: the Dentate Gyrus of the hippocampus (middle) and the Basolateral Amygdala (bottom corners). Credit: Image courtesy of the researchers

Most memories have some kind of emotion associated with them: Recalling the week you just spent at the beach probably makes you feel happy, while reflecting on being bullied provokes more negative feelings.

A new study from MIT neuroscientists reveals the brain circuit that controls how memories become linked with positive or negative emotions. Furthermore, the researchers found that they could reverse the emotional association of specific memories by manipulating brain cells with optogenetics -- a technique that uses light to control neuron activity.

The findings, described in the Aug. 27 issue of Nature, demonstrated that a neuronal circuit connecting the hippocampus and the amygdala plays a critical role in associating emotion with memory. This circuit could offer a target for new drugs to help treat conditions such as post-traumatic stress disorder, the researchers say.

"In the future, one may be able to develop methods that help people to remember positive memories more strongly than negative ones," says Susumu Tonegawa, the Picower Professor of Biology and Neuroscience, director of the RIKEN-MIT Center for Neural Circuit Genetics at MIT's Picower Institute for Learning and Memory, and senior author of the paper.

The paper's lead authors are Roger Redondo, a Howard Hughes Medical Institute postdoc at MIT, and Joshua Kim, a graduate student in MIT's Department of Biology.

Shifting memories

Memories are made of many elements, which are stored in different parts of the brain. A memory's context, including information about the location where the event took place, is stored in cells of the hippocampus, while emotions linked to that memory are found in the amygdala.

Previous research has shown that many aspects of memory, including emotional associations, are malleable. Psychotherapists have taken advantage of this to help patients suffering from depression and post-traumatic stress disorder, but the neural circuitry underlying such malleability is not known.

In this study, the researchers set out to explore that malleability with an experimental technique they recently devised that allows them to tag neurons that encode a specific memory, or engram. To achieve this, they label hippocampal cells that are turned on during memory formation with a light-sensitive protein called channelrhodopsin. From that point on, any time those cells are activated with light, the mice recall the memory encoded by that group of cells.

Last year, Tonegawa's lab used this technique to implant, or "incept," false memories in mice by reactivating engrams while the mice were undergoing a different experience. In the new study, the researchers wanted to investigate how the context of a memory becomes linked to a particular emotion. First, they used their engram-labeling protocol to tag neurons associated with either a rewarding experience (for male mice, socializing with a female mouse) or an unpleasant experience (a mild electrical shock). In this first set of experiments, the researchers labeled memory cells in a part of the hippocampus called the dentate gyrus.

Two days later, the mice were placed into a large rectangular arena. For three minutes, the researchers recorded which half of the arena the mice naturally preferred. Then, for mice that had received the fear conditioning, the researchers stimulated the labeled cells in the dentate gyrus with light whenever the mice went into the preferred side. The mice soon began avoiding that area, showing that the reactivation of the fear memory had been successful.

The reward memory could also be reactivated: For mice that were reward-conditioned, the researchers stimulated them with light whenever they went into the less-preferred side, and they soon began to spend more time there, recalling the pleasant memory.

A couple of days later, the researchers tried to reverse the mice's emotional responses. For male mice that had originally received the fear conditioning, they activated the memory cells involved in the fear memory with light for 12 minutes while the mice spent time with female mice. For mice that had initially received the reward conditioning, memory cells were activated while they received mild electric shocks.

Next, the researchers again put the mice in the large two-zone arena. This time, the mice that had originally been conditioned with fear and had avoided the side of the chamber where their hippocampal cells were activated by the laser now began to spend more time in that side when their hippocampal cells were activated, showing that a pleasant association had replaced the fearful one. This reversal also took place in mice that went from reward to fear conditioning.

Altered connections

The researchers then performed the same set of experiments but labeled memory cells in the basolateral amygdala, a region involved in processing emotions. This time, they could not induce a switch by reactivating those cells -- the mice continued to behave as they had been conditioned when the memory cells were first labeled.

This suggests that emotional associations, also called valences, are encoded somewhere in the neural circuitry that connects the dentate gyrus to the amygdala, the researchers say. A fearful experience strengthens the connections between the hippocampal engram and fear-encoding cells in the amygdala, but that connection can be weakened later on as new connections are formed between the hippocampus and amygdala cells that encode positive associations.

"That plasticity of the connection between the hippocampus and the amygdala plays a crucial role in the switching of the valence of the memory," Tonegawa says.

These results indicate that while dentate gyrus cells are neutral with respect to emotion, individual amygdala cells are precommitted to encode fear or reward memory. The researchers are now trying to discover molecular signatures of these two types of amygdala cells. They are also investigating whether reactivating pleasant memories has any effect on depression, in hopes of identifying new targets for drugs to treat depression and post-traumatic stress disorder.

David Anderson, a professor of biology at the California Institute of Technology, says the study makes an important contribution to neuroscientists' fundamental understanding of the brain and also has potential implications for treating mental illness.

"This is a tour de force of modern molecular-biology-based methods for analyzing processes, such as learning and memory, at the neural-circuitry level. It's one of the most sophisticated studies of this type that I've seen," he says.

The research was funded by the RIKEN Brain Science Institute, Howard Hughes Medical Institute, and the JPB Foundation.

Story Source:
The above story is based on materials provided by Massachusetts Institute of Technology. The original article was written by Anne Trafton. Note: Materials may be edited for content and length.

Journal Reference:
Redondo RL, Kim J, Arons AL, Ramirez S, Liu X, Tonegawa S. (2014, Aug 27). Bidirectional switch of the valence associated with a hippocampal contextual memory engram. Nature; DOI: 10.1038/nature13725

* * * * *

Here is the abstract for the Nature article, which is pay-walled, of course.

Bidirectional switch of the valence associated with a hippocampal contextual memory engram

Roger L. Redondo, Joshua Kim, Autumn L. Arons, Steve Ramirez, Xu Liu & Susumu Tonegawa

Nature (2014) doi:10.1038/nature13725 Published online 27 August 2014

The valence of memories is malleable because of their intrinsic reconstructive property1. This property of memory has been used clinically to treat maladaptive behaviours2. However, the neuronal mechanisms and brain circuits that enable the switching of the valence of memories remain largely unknown. Here we investigated these mechanisms by applying the recently developed memory engram cell- manipulation technique3, 4. We labelled with channelrhodopsin-2 (ChR2) a population of cells in either the dorsal dentate gyrus (DG) of the hippocampus or the basolateral complex of the amygdala (BLA) that were specifically activated during contextual fear or reward conditioning. Both groups of fear-conditioned mice displayed aversive light-dependent responses in an optogenetic place avoidance test, whereas both DG- and BLA-labelled mice that underwent reward conditioning exhibited an appetitive response in an optogenetic place preference test. Next, in an attempt to reverse the valence of memory within a subject, mice whose DG or BLA engram had initially been labelled by contextual fear or reward conditioning were subjected to a second conditioning of the opposite valence while their original DG or BLA engram was reactivated by blue light. Subsequent optogenetic place avoidance and preference tests revealed that although the DG-engram group displayed a response indicating a switch of the memory valence, the BLA-engram group did not. This switch was also evident at the cellular level by a change in functional connectivity between DG engram-bearing cells and BLA engram-bearing cells. Thus, we found that in the DG, the neurons carrying the memory engram of a given neutral context have plasticity such that the valence of a conditioned response evoked by their reactivation can be reversed by re-associating this contextual memory engram with a new unconditioned stimulus of an opposite valence. Our present work provides new insight into the functional neural circuits underlying the malleability of emotional memory.

References:
  1. Pavlov, I. P. Conditioned Reflexes: An Investigation of the Physiological Activity of the Cerebral Cortex (Oxford Univ. Press, 1927)
  2. Wolpe, J. Psychotherapy by Reciprocal Inhibition (Stanford Univ. Press, 1958)
  3. Liu, X. et al. Optogenetic stimulation of a hippocampal engram activates fear memory recall. Nature 484, 381385 (2012)
  4. Ramirez, S. et al. Creating a false memory in the hippocampus. Science 341, 387391 (2013)
* * * * *

The second study comes from researchers at Harvard University who are using Xenon gas to remove the emotional context from traumatic memories. This is a murine study, but the results suggest further research will be coming.

Xenon gas is already being used for general anesthetic with fewer side effects and actually providing some cardioprotection and neuorprotection. From Wikipedia:
Xenon is a high-affinity glycine-site NMDA receptor antagonist.[129] However, xenon distinguishes itself from other clinically used NMDA receptor antagonists in its lack of neurotoxicity and its ability to inhibit the neurotoxicity of ketamine and nitrous oxide.[130][131] Unlike ketamine and nitrous oxide, xenon does not stimulate a dopamine efflux from the nucleus accumbens.[132]
First up the press release from Harvard (the Harvard Gazette) and then the abstract and introduction from PLOS ONE, the open access publication platform for science.

Erasing traumatic memories

Xenon exposure may be potential new treatment for people with PTSD

August 27, 2014 | Editor's Pick


By Scott O’Brien, McLean Hospital Communications

Researchers at Harvard-affiliated McLean Hospital are reporting that xenon gas, used in humans for anesthesia and diagnostic imaging, has the potential to become a treatment for post-traumatic stress disorder (PTSD) and other memory-related disorders.

“In our study, we found that xenon gas has the capability of reducing memories of traumatic events,” said Edward G. Meloni, assistant psychologist at McLean and an assistant professor of psychiatry at Harvard Medical School (HMS). “It’s an exciting breakthrough.”

In the study, published in the current issue of PLOS ONE, Meloni and HMS Associate Professor of Psychiatry Marc J. Kaufman, director of the Translational Imaging Laboratory at McLean, examined whether a low concentration of xenon gas could interfere with a process called reconsolidation — a state in which reactivated memories become susceptible to modification. “We know from previous research that each time an emotional memory is recalled, the brain actually re-stores it as if it were a new memory. With this knowledge, we decided to see whether we could alter the process by introducing xenon gas immediately after a fear memory was reactivated,” explained Meloni.


Statistics show an increase in PTSD diagnoses among the military. Harvard researchers are investigating a potential breakthrough that would treat symptoms associated with PTSD. Credit: Congressional Research Service PTSD data/McLean Hospital
The investigators used an animal model of PTSD called fear conditioning to train rats to be afraid of environmental cues that were paired with brief foot shocks. Reactivating the fearful memory was done by exposing the rats to those same cues and measuring their freezing response as a readout of fear. “We found that a single exposure to the gas, which is known to block NMDA receptors involved in memory formation in the brain, dramatically and persistently reduced fear responses for up to two weeks. It was as though the animals no longer remembered to be afraid of those cues,” said Meloni.

Meloni points out that the inherent properties of a gas such as xenon make it especially attractive for targeting dynamic processes like memory reconsolidation. “Unlike other drugs or medications that may also block NMDA receptors involved in memory, xenon gets in and out of the brain very quickly. This suggests that xenon could be given at the exact time the memory is reactivated, and for a limited amount of time, which may be key features for any potential therapy used in humans.”

“The fact that we were able to inhibit remembering of a traumatic memory with xenon is very promising because it is currently used in humans for other purposes, and thus it could be repurposed to treat PTSD,” added Kaufman.

For these investigators, several questions remain to be addressed with further testing. “From here we want to explore whether lower xenon doses or shorter exposure times would also block memory reconsolidation and the expression of fear. We’d also like to know if xenon is as effective at reducing traumatic memories from past events, so-called remote memories, versus the newly formed ones we tested in our study.”

Meloni and Kaufman indicate that future studies are planned to test whether the effects of xenon in rats that they saw in their study translate to humans. Given that intrusive re-experiencing of traumatic memories — including flashbacks, nightmares, and distress and physiological reactions induced by with trauma reminders — is a hallmark symptom for many who suffer from PTSD, a treatment that alleviates the impact of those painful memories could provide welcome relief.

The study may be viewed on the PLOS ONE website.
* * * * *

Xenon Impairs Reconsolidation of Fear Memories in a Rat Model of Post-Traumatic Stress Disorder (PTSD)


Edward G. Meloni, Timothy E. Gillis, Jasmine Manoukian, Marc J. Kaufman

Abstract

Xenon (Xe) is a noble gas that has been developed for use in people as an inhalational anesthestic and a diagnostic imaging agent. Xe inhibits glutamatergic N-methyl-D-aspartate (NMDA) receptors involved in learning and memory and can affect synaptic plasticity in the amygdala and hippocampus, two brain areas known to play a role in fear conditioning models of post-traumatic stress disorder (PTSD). Because glutamate receptors also have been shown to play a role in fear memory reconsolidation – a state in which recalled memories become susceptible to modification – we examined whether Xe administered after fear memory reactivation could affect subsequent expression of fear-like behavior (freezing) in rats. Male Sprague-Dawley rats were trained for contextual and cued fear conditioning and the effects of inhaled Xe (25%, 1 hr) on fear memory reconsolidation were tested using conditioned freezing measured days or weeks after reactivation/Xe administration. Xe administration immediately after fear memory reactivation significantly reduced conditioned freezing when tested 48 h, 96 h or 18 d after reactivation/Xe administration. Xe did not affect freezing when treatment was delayed until 2 h after reactivation or when administered in the absence of fear memory reactivation. These data suggest that Xe substantially and persistently inhibits memory reconsolidation in a reactivation and time-dependent manner, that it could be used as a new research tool to characterize reconsolidation and other memory processes, and that it could be developed to treat people with PTSD and other disorders related to emotional memory.
Full Citation: 
Meloni EG, Gillis TE, Manoukian J, Kaufman MJ. (2014. Aug 27). Xenon Impairs Reconsolidation of Fear Memories in a Rat Model of Post-Traumatic Stress Disorder (PTSD). PLoS ONE 9(8): e106189. doi:10.1371/journal.pone.0106189

Introduction

Mitigation of persistent, intrusive, traumatic memories experienced by people with post-traumatic stress disorder (PTSD) remains a key therapeutic challenge [1]. Behavioral treatments such as extinction training – administered alone or in combination with cognitive-enhancing drugs (e.g. d-cycloserine) – attempt to inhibit underlying traumatic memories by facilitating a new set of learning contingencies, but often achieve limited success [2]. Another learning and memory phenomenon known as reconsolidation, a process by which reactivated (retrieved) memories temporarily enter a labile state (the reconsolidation window), has been studied to determine whether drug or behavioral interventions can prevent a traumatic memory trace from being re-incorporated back into the neural engram, inhibiting the memory [3][6]. Several chemical agents have been found to inhibit fear memory reconsolidation in animals [7] but unfortunately do not translate well to humans, limiting their clinical use. They either are toxic (e.g. protein synthesis inhibitors), induce unwanted side effects, are slow acting such that brain drug concentrations peak outside of the reconsolidation window, or are slowly eliminated such that they interfere with later onset memory processes including extinction [8]. A recent human study documented that a single electroconvulsive therapy (ECT) treatment administered to unipolar depressed subjects immediately after emotional memory reactivation disrupted reconsolidation, confirming that reconsolidation occurs in humans and that it can be inhibited by a brief treatment [9]. While ECT is indicated for therapeutic use in people with treatment-resistant major depression, it may not be a viable treatment for other clinical populations. Thus, there is a significant unmet need for a minimally invasive, safe and well-tolerated treatment that can be used clinically to inhibit fear memory reconsolidation in people with PTSD.

The noble gas xenon (Xe) inhibits glutamatergic N-methyl-D-aspartate (NMDA) receptors [10] known to play a role in memory reconsolidation [11]. Xe reduces NMDA-mediated synaptic currents and neuronal plasticity in the basolateral amygdala and CA1 region of the hippocampus [12], [13]; these brain areas are involved in Pavlovian fear conditioning, an animal model of PTSD used to elucidate learning and memory processes, including reconsolidation [14][16]. Xe already is used in humans at high concentration (>50%) as an anesthetic and at subsedative concentration (28%) as a diagnostic imaging agent; in both applications, Xe has excellent safety/side effect profiles and is well tolerated [17][19]. Further, NMDA receptor glycine antagonists like Xe [10] do not appear to have significant abuse liability and do not induce psychosis [20], [21], consistent with clinical experience [18], [19]. Thus, Xe has a number of favorable properties that might be beneficial for treating fear memory disorders. As fear memory reconsolidation is an “evolutionarily conserved memory-update mechanism” [5], we evaluated in rats whether administering a subsedative concentration of Xe (maximum concentration 25%, 1 h) via inhalation following conditioned fear memory reactivation could reduce subsequent expression of fear-like behavior. Here, we report that Xe impaired reconsolidation of fear memory demonstrated as a reduction in conditioned freezing, a behavioral readout used to measure fear in animals.

Friday, August 15, 2014

Shrink Rap Radio #416 – Trauma and The Soul with Donald Kalsched PhD

 

Dr. Donald Kalsched's Trauma and the Soul: A psycho-spiritual approach to human development and its interruption (2013) was one of my Best Books for 2013, and it was the long-awaited follow-up to his now classic first book, The Inner World of Trauma: Archetypal Defences of the Personal Spirit (1996). The unique depth and insight of his trauma model, which is partly Jungian, partly relational/intersubjective (psychoanalytic), partly somatic, and probably some other parts, as well, is innovative and powerful.

My friend Monica also posted recently about Dr. Kalsched - check it out at her excellent blog, Beyond Meds.

Shrink Rap Radio #416 – Trauma and The Soul with Donald Kalsched PhD

Dr. David Van Nuys
Posted on August 14, 2014



Donald Kalsched, Ph.D. is a Clinical Psychologist and Jungian Psychoanalyst in private practice in Albuquerque, New Mexico. He is a senior training analyst with the Inter-Regional Society of Jungian Analysts where he teaches and supervises. His 1996 book The Inner World of Trauma: Archetypal Defenses of the Personal Spirit has found a wide readership in both psychoanalytic and Jungian circles and has been translated into many languages. Dr. Kalsched teaches and lectures nationally and internationally, pursuing his inter-disciplinary interest in early trauma and dissociation theory and its mytho-poetic manifestations in the mythic and religious iconography of many cultures. His latest book Trauma and the Soul: A Psycho-Spiritual Approach to Human Development and its Interruption, was published in April, 2013.

Play