Monday, January 12, 2009

Steven Pinker - My Genome, My Self

Very cool. Steven Pinker shares with us what he found out about himself through his genome.

My Genome, My Self


Jeff Riedel for The New York Times

Published: January 7, 2009

ONE OF THE PERKS of being a psychologist is access to tools that allow you to carry out the injunction to know thyself. I have been tested for vocational interest (closest match: psychologist), intelligence (above average), personality (open, conscientious, agreeable, average in extraversion, not too neurotic) and political orientation (neither leftist nor rightist, more libertarian than authoritarian). I have M.R.I. pictures of my brain (no obvious holes or bulges) and soon will undergo the ultimate test of marital love: my brain will be scanned while my wife’s name is subliminally flashed before my eyes.

Last fall I submitted to the latest high-tech way to bare your soul. I had my genome sequenced and am allowing it to be posted on the Internet, along with my medical history. The opportunity arose when the biologist George Church sought 10 volunteers to kick off his audacious Personal Genome Project. The P.G.P. has created a public database that will contain the genomes and traits of 100,000 people. Tapping the magic of crowd sourcing that gave us Wikipedia and Google rankings, the project seeks to engage geneticists in a worldwide effort to sift through the genetic and environmental predictors of medical, physical and behavioral traits.

The Personal Genome Project is an initiative in basic research, not personal discovery. Yet the technological advance making it possible — the plunging cost of genome sequencing — will soon give people an unprecedented opportunity to contemplate their own biological and even psychological makeups. We have entered the era of consumer genetics. At one end of the price range you can get a complete sequence and analysis of your genome from Knome (often pronounced “know me”) for $99,500. At the other you can get a sample of traits, disease risks and ancestry data from 23andMe for $399. The science journal Nature listed “Personal Genomics Goes Mainstream” as a top news story of 2008.

Like the early days of the Internet, the dawn of personal genomics promises benefits and pitfalls that no one can foresee. It could usher in an era of personalized medicine, in which drug regimens are customized for a patient’s biochemistry rather than juggled through trial and error, and screening and prevention measures are aimed at those who are most at risk. It opens up a niche for bottom-feeding companies to terrify hypochondriacs by turning dubious probabilities into Genes of Doom. Depending on who has access to the information, personal genomics could bring about national health insurance, leapfrogging decades of debate, because piecemeal insurance is not viable in a world in which insurers can cherry-pick the most risk-free customers, or in which at-risk customers can load up on lavish insurance.

The pitfalls of personal genomics have already made it a subject of government attention. Last year President Bush signed the Genetic Information Nondiscrimination Act, outlawing discrimination in employment and health insurance based on genetic data. And the states of California and New York took action against the direct-to-consumer companies, arguing that what they provide are medical tests and thus can be ordered only by a doctor.

With the genome no less than with the Internet, information wants to be free, and I doubt that paternalistic measures can stifle the industry for long (but then, I have a libertarian temperament). For better or for worse, people will want to know about their genomes. The human mind is prone to essentialism — the intuition that living things house some hidden substance that gives them their form and determines their powers. Over the past century, this essence has become increasingly concrete. Growing out of the early, vague idea that traits are “in the blood,” the essence became identified with the abstractions discovered by Gregor Mendel called genes, and then with the iconic double helix of DNA. But DNA has long been an invisible molecule accessible only to a white-coated priesthood. Today, for the price of a flat-screen TV, people can read their essence as a printout detailing their very own A’s, C’s, T’s and G’s.

A firsthand familiarity with the code of life is bound to confront us with the emotional, moral and political baggage associated with the idea of our essential nature. People have long been familiar with tests for heritable diseases, and the use of genetics to trace ancestry — the new “Roots” — is becoming familiar as well. But we are only beginning to recognize that our genome also contains information about our temperaments and abilities. Affordable genotyping may offer new kinds of answers to the question “Who am I?” — to ruminations about our ancestry, our vulnerabilities, our character and our choices in life.

Over the years I have come to appreciate how elusive the answers to those questions can be. During my first book tour 15 years ago, an interviewer noted that the paleontologist Stephen Jay Gould had dedicated his first book to his father, who took him to see the dinosaurs when he was 5. What was the event that made me become a cognitive psychologist who studies language? I was dumbstruck. The only thing that came to mind was that the human mind is uniquely interesting and that as soon as I learned you could study it for a living, I knew that that was what I wanted to do. But that response would not just have been charmless; it would also have failed to answer the question. Millions of people are exposed to cognitive psychology in college but have no interest in making a career of it. What made it so attractive to me?

As I stared blankly, the interviewer suggested that perhaps it was because I grew up in Quebec in the 1970s when language, our pre-eminent cognitive capacity, figured so prominently in debates about the future of the province. I quickly agreed — and silently vowed to come up with something better for the next time. Now I say that my formative years were a time of raging debates about the political implications of human nature, or that my parents subscribed to a Time-Life series of science books, and my eye was caught by the one called “The Mind,” or that one day a friend took me to hear a lecture by the great Canadian psychologist D. O. Hebb, and I was hooked. But it is all humbug. The very fact that I had to think so hard brought home what scholars of autobiography and memoir have long recognized. None of us know what made us what we are, and when we have to say something, we make up a good story.

An obvious candidate for the real answer is that we are shaped by our genes in ways that none of us can directly know. Of course genes can’t pull the levers of our behavior directly. But they affect the wiring and workings of the brain, and the brain is the seat of our drives, temperaments and patterns of thought. Each of us is dealt a unique hand of tastes and aptitudes, like curiosity, ambition, empathy, a thirst for novelty or for security, a comfort level with the social or the mechanical or the abstract. Some opportunities we come across click with our constitutions and set us along a path in life.

This hardly seems radical — any parent of more than one child will tell you that babies come into the world with distinct personalities. But what can anyone say about how the baby got to be that way? Until recently, the only portents on offer were traits that ran in the family, and even they conflated genetic tendencies with family traditions. Now, at least in theory, personal genomics can offer a more precise explanation. We might be able to identify the actual genes that incline a person to being nasty or nice, an egghead or a doer, a sad sack or a blithe spirit.

Looking to the genome for the nature of the person is far from innocuous. In the 20th century, many intellectuals embraced the idea that babies are blank slates that are inscribed by parents and society. It allowed them to distance themselves from toxic doctrines like that of a superior race, the eugenic breeding of a better species or a genetic version of the Twinkie Defense in which individuals or society could evade responsibility by saying that it’s all in the genes. When it came to human behavior, the attitude toward genetics was “Don’t go there.” Those who did go there found themselves picketed, tarred as Nazis and genetic determinists or, in the case of the biologist E. O. Wilson, doused with a pitcher of ice water at a scientific conference.

Today, as the lessons of history have become clearer, the taboo is fading. Though the 20th century saw horrific genocides inspired by Nazi pseudoscience about genetics and race, it also saw horrific genocides inspired by Marxist pseudoscience about the malleability of human nature. The real threat to humanity comes from totalizing ideologies and the denial of human rights, rather than a curiosity about nature and nurture. Today it is the humane democracies of Scandinavia that are hotbeds of research in behavioral genetics, and two of the groups who were historically most victimized by racial pseudoscience — Jews and African-Americans — are among the most avid consumers of information about their genes.

Nor should the scare word “determinism” get in the way of understanding our genetic roots. For some conditions, like Huntington’s disease, genetic determinism is simply correct: everyone with the defective gene who lives long enough will develop the condition. But for most other traits, any influence of the genes will be probabilistic. Having a version of a gene may change the odds, making you more or less likely to have a trait, all things being equal, but as we shall see, the actual outcome depends on a tangle of other circumstances as well.

With personal genomics in its infancy, we can’t know whether it will deliver usable information about our psychological traits. But evidence from old-fashioned behavioral genetics — studies of twins, adoptees and other kinds of relatives — suggests that those genes are in there somewhere. Though once vilified as fraud-infested crypto-eugenics, behavioral genetics has accumulated sophisticated methodologies and replicable findings, which can tell us how much we can ever expect to learn about ourselves from personal genomics.

To study something scientifically, you first have to measure it, and psychologists have developed tests for many mental traits. And contrary to popular opinion, the tests work pretty well: they give a similar measurement of a person every time they are administered, and they statistically predict life outcomes like school and job performance, psychiatric diagnoses and marital stability. Tests for intelligence might ask people to recite a string of digits backward, define a word like “predicament,” identify what an egg and a seed have in common or assemble four triangles into a square. Personality tests ask people to agree or disagree with statements like “Often I cross the street in order not to meet someone I know,” “I often was in trouble in school,” “Before I do something I try to consider how my friends will react to it” and “People say insulting and vulgar things about me.” People’s answers to a large set of these questions tend to vary in five major ways: openness to experience, conscientiousness, extraversion, agreeableness (as opposed to antagonism) and neuroticism. The scores can then be compared with those of relatives who vary in relatedness and family backgrounds.

The most prominent finding of behavioral genetics has been summarized by the psychologist Eric Turkheimer: “The nature-nurture debate is over. . . . All human behavioral traits are heritable.” By this he meant that a substantial fraction of the variation among individuals within a culture can be linked to variation in their genes. Whether you measure intelligence or personality, religiosity or political orientation, television watching or cigarette smoking, the outcome is the same. Identical twins (who share all their genes) are more similar than fraternal twins (who share half their genes that vary among people). Biological siblings (who share half those genes too) are more similar than adopted siblings (who share no more genes than do strangers). And identical twins separated at birth and raised in different adoptive homes (who share their genes but not their environments) are uncannily similar.
Read the rest of this long and interesting article.


No comments: